Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Noelia Sanchez Ballester, ${ }^{\text {a }}$ Julia

 Barreira Fontecha, ${ }^{\text {a }}$ Jan Wikaira $^{\text {b }}$ and Vickie McKee ${ }^{\text {a }}$${ }^{\text {a }}$ Chemistry Department, Loughborough University, Loughborough, Leics LE11 3TU, England, and ${ }^{\mathbf{b}}$ Chemistry Department,
Canterbury University, Christchurch, PB 4800,
New Zealand

Correspondence e-mail:
jan.wikaira@canterbury.ac.nz

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.116$
Data-to-parameter ratio $=19.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2-pyridylmethyl)amine-borane

The title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \cdot \mathrm{BH}_{3}$ or $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BN}_{3}$, contains a BH_{3} group and two picolyl groups attached to a central N atom. Both edge-to-face and face-to-face π-stacking interactions are found.

Comment

The asymmetric unit of the title compound, (I), contains one molecule. The two planar pyridyl rings are twisted (Fig. 1) about the central N atom, with an interplanar angle of 110.9°. The amine N atom is not involved in any hydrogen bonding but pyridyl atom N1 interacts with atom C3 in an adjacent ring (Table 1).

(I)

An edge-to-face interaction is found between the H atom on C 2 and the plane of the pyridine ring containing atom N 3 (Fig. 2). This H atom is $2.806 \AA$ from the mean plane of the pyridine ring at $\left(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right)$. The pyridine ring containing atom N 3 is π-stacked with its symmetry equivalent by inversion (symmetry code: $2-x,-y, 1-z$). The interplanar and the centroid-to-centroid distances are 3.496 (2) and 3.971 Å respectively (Fig. 2).

Figure 1
Perspective view of (I), showing 50\% probability displacement ellipsoids.

Received 22 December 2004
Accepted 18 January 2005 Online 5 February 2005

Experimental

2-(Aminomethyl)pyridine $(4.95 \mathrm{~g}, 44.77 \mathrm{mmol})$ and pyridine-2carboxaldehyde ($4.96 \mathrm{~g}, 46.31 \mathrm{mmol}$) were dissolved in methanol $(150 \mathrm{ml})$ (Lambert et al., 1997). The solution was stirred for 2 h at room temperature (yellow-orange solution). After slow addition of an excess of sodium borohydride, stirring was continued for 1 h (paleyellow solution). The solvent was removed by rotary evaporation to give bis(pyridin-2-ylmethyl)amine ($6.43 \mathrm{~g}, 73 \%$) as an orange oil. Colourless crystals of the borane adduct appeared as a minor product after the oil was stored in a freezer overnight.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BN}_{3} \\
& M_{r}=213.09 \\
& \text { Monoclinic, } P 2_{\mathrm{A}} / n \\
& a=5.3172(4) \AA \\
& b=24.8494(19) \AA \\
& c=9.3896(7) \AA \\
& \beta=102.938(1)^{\circ} \\
& V=1209.14(16) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.171 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3633
reflections
$\theta=2.4-27.5^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Needle, colourless
$0.55 \times 0.17 \times 0.09 \mathrm{~mm}$
Data collection

Bruker SMART CCD area-detector	2860 independent reflections
\quad diffractometer	2156 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.023$
Absorption correction: multi-scan	$\theta_{\max }=28.8^{\circ}$
$\quad(S A D A B S ;$ Bruker, 1998)	$h=-7 \rightarrow 6$
$T_{\min }=0.946, T_{\max }=0.990$	$k=-32 \rightarrow 32$
10293 measured reflections	$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0526 P)^{2} \\
&+0.3966 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.116$
$S=1.02$
2860 reflections
148 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.66	$3.5215(19)$	150

Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$.

Figure 2
View showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ bond (C 3 and N 1), the interaction between the H atom bonded to C 2 and the pyridyl ring, and the π-stacking of the N3-containing pyridine rings [symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $2-x,-y, 1-z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.]

H atoms bonded to C and B atoms were placed at calculated positions; the constrained $\mathrm{C}-\mathrm{H}$ distances were $0.95,0.98$ and $0.99 \AA$ for H atoms bonded to $\mathrm{Csp}{ }^{2}$, $\mathrm{B} s p^{3}$ and methylene C atoms, respectively. They were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{B}, \mathrm{C})$. The H atom bonded to the amine N atom was located in a difference map and the coordinates freely refined with a fixed $U_{\text {iso }}$ value of $0.03 \AA$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

We are grateful to the Socrates Exchange Programme for support. JW thanks the Erskine fund at the University of Canterbury for support.

References

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Lambert, E., Chabut, B., Chardon-Noblat, S., Deronzier, A., Chottard, G., Bousseksou, A., Tuchages, J.-P., Laugier, J., Bardet, M. \& Latour, J.-M. (1997). J. Am. Chem. Soc. 119, 9424-9437.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

